\begin{tabbing} $\forall$\=${\it es}$:ES, $P_{1}$, $P_{2}$:(E$\rightarrow\mathbb{P}$), $Q_{1}$, $Q_{2}$, $Q_{3}$:(E$\rightarrow$E$\rightarrow\mathbb{P}$), $f_{1}$:(\{$e$:E$\mid$ $P_{1}$($e$)\} $\rightarrow$\{$e$:E$\mid$ $P_{2}$($e$)\} ),\+ \\[0ex]$f_{2}$:(\{$e$:E$\mid$ $P_{2}$($e$)\} $\rightarrow$E). \-\\[0ex]$f_{1}$ is $Q_{2}${-}$Q_{3}${-}pre{-}preserving on $P_{1}$ \\[0ex]$\Rightarrow$ $f_{2}$ is $Q_{1}${-}$Q_{2}${-}pre{-}preserving on $P_{2}$ \\[0ex]$\Rightarrow$ $f_{2}$ o $f_{1}$ is $Q_{1}${-}$Q_{3}${-}pre{-}preserving on $P_{1}$ \end{tabbing}